Use of mini implants to replace a missing tooth in a growing patient: a six-year follow up case report

ABSTRACT

Background Loss of anterior permanent teeth can have a detrimental effect on children’s quality of life and the therapeutic approaches are always a challenge. From a physiologic and psychological standpoint, the use of dental implants has several advantages in replacing missing teeth. However, several studies have shown that conventional implants are not indicated in patients that are still growing, since they interfere with the sagittal and transversal growth of the maxilla. Recent literature has suggested that Mini Dental Implants (MDIs) can be successfully applied in growing patients, without interfering with the normal craniofacial growth process.

Case report This report describes the replacement of missing teeth in a 10-year-old patient by a mini implant of 1.8 mm diameter. After a six-year follow-up period, the mini implant did not follow the regular growth process of the maxilla, resulting in functional and aesthetic complications. Removal of the mini implant entailed some difficulties.

Keywords Child; Mini dental implant; Single-tooth; Tooth avulsion.

Introduction

Tooth loss during adolescence could negatively affect the patient’s daily social relationships and quality of life [Stanford, 2007; Bateman et al., 2010; Levin et al., 2006; Giannetti et al., 2010]. Numerous benefits of using root-form titanium dental implants for teeth replacement in adults have been widely documented. From the psychological standpoint, the impact of dental implant treatment on self-esteem and confidence could have considerable influence in personality development during adolescence. Additionally, children have excellent blood supply and osseous healing [Percinoto et al., 2001] thus improving the prognosis of this treatment option which may be beneficial to preserve alveolar bone as has been described for adults. However, the use of implants in growing patients is controversial.

Human [Thilander et al., 1999; Brugnolo et al., 1996; Westwood and Duncan, 1996] and animal [Odman et al., 1991; Sennerby et al., 1993; Thilander et al., 1992] studies have suggested that implants in growing skeletons can behave as ankylosed teeth, unable to follow the changes related with the normal growth of the alveolar process [Thilander et al., 1994; Iseri and Solow, 1996] caused by the continuous eruption of adjacent teeth [Odman et al., 1991; Thilander et al., 1992].

The major complication reported with the use of the conventional dental implant in immature subjects, was the vertical discrepancy of the implant crown with the final occlusal plane [Thilander et al., 1994; Thilander et al., 1999; Thilander et al., 2001], leading to several aesthetic complications, since ankylosis results in restriction to follow the sagittal growth.

A two-year case report [Giannetti et al., 2010] showed a successful implant prosthetic rehabilitation in a growing patient using mini implants, stating that this procedure did not interfere with the sagittal and transversal growth of the maxillary bones.

The purpose of the present case report was to present the clinical result after a six-year follow-up of a mini implant used for replacement of a missing tooth in a 10-year-old patient.

Case report

A 10-year-old boy patient, who had lost his permanent maxillary left central incisor due to a traumatism two years prior, asked for treatment at the School of Dentistry, of the University of Concepcion, Chile.

Initial orthopantomography and lateral teleradiography were taken (Fig. 1). An orthodontic treatment was planned to start two years later, after the eruption of the permanent canines.

In the meanwhile, the child’s parents asked for a fixed provisional solution to replace the missing tooth. The possibility of using a provisional implant was evaluated to retain a temporary crown during the patient’s growing period. A machined surface, mini dental implant (MDI) was considered to reduce the rate of implant ankylosis affecting the normal development of this edentulous area.
After explaining associated risks and signing the informed consent, the use of an MDI was indicated to stabilise a temporary crown. By using a flapless procedure, a 1.8 mm diameter and 14 mm length mini transitional implant (MTI Transitional Implants, Dentatus, NY, USA) was inserted in the area of 1.1.

During the six-year follow-up, the provisional crown was lost six times (once in the 3th, 4th and 5th year and three times in the 6th year). The crown was immediately re-cemented and refilled with acrylic by an external dentist. Due to the high frequency of provisional loss, caused by lack of retention, the mini-implant was removed.

High level of forces, near 50 Ncm, was necessary to remove the osseointegrated provisional mini-implant, causing severe deformation during the process (Fig. 2).

Comparing the baseline clinical and radiographic situation (Fig. 3) with the six-year recall (Fig. 4) a high vertical discrepancy between the implant and the adjacent teeth can be clearly observed, making impossible to achieve an adequate retention of the crown.

Discussion

Several studies have suggested that implants in growing skeletons can act as ankylosed teeth unable to follow normal growth of the alveolar process, caused by the continuous eruption of adjacent teeth. The ankylosis phenomenon around an implant can be explained by the active bone healing process in the immediate vicinity of the implant surface, which has been described as a functional ankylosis [Giannetti et al., 2010; Schulte, 1967; Schroeder et al., 1981]. However, at some distance from the implants surface the tissues develop normally [Heij et al., 2006].

The growth arrest phenomenon is not seen in edentulous areas, where no implant is placed, or after decoronation of ankylosed teeth. This observation suggests that the implant-retained crown acts as a barrier interrupting the interdental fibres of adjacent teeth in the edentulous zone. The use of mini dental implants has been suggested to replace anterior missing teeth in growing patients. It may be assumed that using an extremely thin implant, fibres interference between adjacent teeth would be minimum, allowing a normal growth of the alveolar process.

Mini implants have shown successful clinical results mainly as anchor for overdentures [Griffitts et al., 2005; Jofre et al., 2010a; Jofre et al., 2010b; Sendax, 1996; el Attar et al., 1999; Bulard andand Vance, 2005; Shatkin et al., 2007], but the use of this type of very small diameter implant in children could have advantages as implant placement in narrow sites, minimally invasive surgeries avoiding bone graft or complex surgical procedures, and they also can be immediately loaded [Velasco Ortega, 2004; Christensen,
Conclusion

This case report confirm the potential risks involved in placing implants in growing patients, even when using mini dental implants. Alternative approaches for replacing missing upper incisor in growing individuals should be considered.

References