Correlation between oral health in disabled children and depressive symptoms in their mothers

ABSTRACT

Aim The aim of this study was to evaluate the presence and degree of depressive symptoms in mothers of disabled children and to assess the correlation between maternal major depression risk and son/daughter oral health.

Materials and methods A prospective study was conducted in 51 disabled children and their 51 mothers. In children dmft/DMFT values, food and/or sugar-sweetened consumption levels and daily tooth brushing frequency were evaluated. Depressive maternal symptoms were measured by EDPS questionnaire: the questionnaire scores were converted into positive predictive values (PPV) that represented the risk of falling into major depression. A regression analysis was performed on the variables (statistical significance was set at p value ≤ 0.05).

Results Children (8.68 ± 3.98 years old) average dmft/DMFT was 2.7. Fifty three percent of the mothers (38.37 ± 6.04 years) were at risk for depression (PPV>60%), while depressive symptoms were already present in 25% of the subjects (PPV=100%).

Discussion and conclusion Mothers of disabled children are more likely to fall into major depression compared to mothers of healthy children. For each mother-child couple the correlation between different variables was evaluated: there was a statistically significant correlation between children’s dmft/DMFT values and mothers’ depression risk. The risk of maternal depression was statistically correlated to prevalence of caries and sugar consumption in children.

Keywords Disabled children; Major depression risk; Mothers of disabled children; Son/daughter oral health.

Introduction

Patients with special needs are defined as subjects with behavioural issues, developmental disorders, cognitive disorders, congenital or genetic disorders, or systemic diseases. These conditions may expose these subjects to an increased risk of oral diseases [Bozkurt et al., 2004; Trulsson and Klingberg, 2003]. Dental and cranio-facial anomalies can lead to psychological and social impairments in addition to disfunctions such as inabilities to eat, breath, and speak properly. Families of children affected by disabilities suffer from significantly elevated stress levels. Level of adaptability refers to the ability of a family system to face a stressful situation such as the birth and the raising of a disabled child [Baker et al., 2011]. Mothers of disabled children are more exposed to the risks of depression: depressive symptoms can be more or less severe ranging from bad mood, negativity, feeling of failure, lack of appetite, weight loss, and sleep disturbances to social withdrawal, crying, feeling of punishment, self-blame and suicidal thoughts [Yildirim and Bağbakkal, 2010]. Mothers showing these symptoms are more likely to screen positive for depression and to report difficulties in caring for their children and for themselves [Dang et al., 2013].

In the literature there are no studies evaluating maternal major depression among Italian mothers of disabled children and especially studies evaluating correlations between maternal (or main caregiver) depression symptoms and children oral health status. The aim of the present study is to evaluate the risk for depression in Italian mothers of children affected by disabilities and to investigate the correlation between levels of mothers’ depression and children’s caries prevalence.

Materials and methods

Participants

The study was conducted on a sample of 51 pairs of subjects consisting in 51 young patients affected by systemic diseases in addition to physical, mental or sensory disability and their respective mothers. The patients’ subgroup was composed of 25 males and 26 females with an average age of 8.7 years (from 2 to 18 years). The patients were referred from the Paediatric Department of Sant’Orsola Hospital for a dental examination at the Dentistry for Special Needs
Patients Division of the University of Bologna. Patients were affected by genetic and chromosomal syndromes (20 patients) including Marfan, Noonan, Prader-Willi, Turner, Down, George, Silver-Russel, Marinesco-Sjogren, X-fragile, Sturge-Weber, Neurofibromatosis, Dysplasia Cleidocranica syndromes. The others patients were affected by congenital heart disease (3 patients), neuropathies (3 patients), respiratory diseases (3 patients), haematologic diseases (4 patients), kidney diseases (one patient), infective diseases (one patient). The mothers’ subgroup was composed of 51 subjects with an average age of 38.4 years (from 26 to 49 years). The inclusion criteria for the study were: patients older than 2 years old; affected by disabilities and/or systemic diseases; always accompanied to dental visits by their mothers; mothers were the child’s caregiver; mothers willing to submit to a questionnaire about their private life. An informed consent was signed by the mothers, following the Declaration of Helsinki principles.

Measures

The severity of the systemic disease was evaluated at the Pediatrics Department of the Bologna University Hospital, S. Orsola-Malpighi, and classified according to the ASA classification [Keats, 1978]. The degree of psychomotor retardation (RPM) was measured referring to a four level scale: none, mild, moderate and severe. Each patient’s level of cooperation was classified using the Frankl scale (0: none; 1: poor; 2: average; 3: good; 4: very good).

A specially trained dentist performed the intraoral clinical examination for each patient in order to evaluate dental formula, dmft/DMFT and SIC (number of decayed, missing and filled teeth in the third of the group with the highest dmft/DMFT).

Mothers were interviewed about personal and household information (age, education, employment, number of children, other children with disabilities, cohabiting or single), and asked if in the past they had received oral hygiene instructions and/or information about oral disease prevention (proper diet, use of fluoride, regular dental visits, daily frequency of brushing). Eating habits of their son/daughter were expressed by numeric values ranging from 0 to 5 depending on the daily consumption of sugary food and drinks including candies, chewing gum, carbonated beverages, fruit juices, sweet snacks. The daily frequency of brushing was classified into four levels: from 0 (no daily tooth brushing) to 3 (three times a day).

EPDS (Edinburgh Postnatal Depression Scale) questionnaire [Cox et al., 1987; Benvenuti et al., 1999] was used for evaluation of the depressive symptoms in the sample of mothers. A specially trained operator from the Department of Psychology, University of Bologna, interviewed the mothers. The questionnaire (Fig. 1) consisted of 10 questions. For each question four possible answers were provided and a score (from 0 to 16/17) matched for each answer. The scores sum represents a value that indicates the presence or absence of the risk of depressive symptoms. Values of positive prediction (PPV), expressed in percentage, assigned to each score are shown in Table 1. PPVs represent the risk for major

<table>
<thead>
<tr>
<th>Threshold scores</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/7</td>
<td>100</td>
<td>73.7</td>
<td>27.4</td>
</tr>
<tr>
<td>7/8</td>
<td>100</td>
<td>82.1</td>
<td>51.4</td>
</tr>
<tr>
<td>8/9</td>
<td>94.4</td>
<td>87.4</td>
<td>58.6</td>
</tr>
<tr>
<td>9/10</td>
<td>83.3</td>
<td>89.5</td>
<td>60.0</td>
</tr>
<tr>
<td>10/11</td>
<td>61.1</td>
<td>94.7</td>
<td>68.8</td>
</tr>
<tr>
<td>11/12</td>
<td>55.6</td>
<td>97.9</td>
<td>83.3</td>
</tr>
<tr>
<td>12/13</td>
<td>55.6</td>
<td>98.9</td>
<td>90.9</td>
</tr>
<tr>
<td>13/14</td>
<td>50.0</td>
<td>98.9</td>
<td>90.0</td>
</tr>
<tr>
<td>14/15 15/16</td>
<td>38.9</td>
<td>98.9</td>
<td>87.5</td>
</tr>
<tr>
<td>16/17</td>
<td>27.8</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

TABLE 1 PPV (values of positive prediction).
depression. The EPDS test, created to assess postnatal depression, was also validated to evaluate depression in non-postnatal women [Cox et al., 1996]. The EPDS test has been chosen among other depression screening tests for its specificity in screening maternal major depression and its simplicity in the data collection process.

\textbf{Statistical analysis}

Correlations between all variables were tested by regression analysis and linear correlation tests. Statistical significance was set at \(p \leq 0.05 \). The results related to depressive symptoms were expressed by numeric values corresponding to the EPDS questionnaire scores.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
Child age & Child gender & ASA & RPM*1 & Dsicl.*2 & Dtb*3 & dmft & DMFT & Mother age & IL*4 & QR*5 & PPV % & Work \\
\hline
1 & 12 & M & 2 & None & 3 & 0 & / & 7 & 39 & 1 & 3 & 0 & Yes \\
2 & 8 & F & 3 & None & 1 & 2 & 1 & 0 & 39 & 1 & 3 & 0 & Yes \\
3 & 5 & F & 3 & None & 0 & 1 & 0 & / & 33 & 2 & 2 & 0 & Yes \\
4 & 10 & M & 2 & None & 4 & 2 & 0 & 5 & 39 & 1 & 27 & 100 & Yes \\
5 & 7 & F & 3 & None & 2 & 1 & 1 & 0 & 32 & 3 & 18 & 100 & Yes \\
6 & 17 & M & 3 & None & >5 & 2 & 1 & 9 & 48 & 2 & 13 & 90/90.9 & Yes \\
7 & 4 & F & 3 & Severe & 1 & 0 & 0 & / & 33 & 2 & 15 & 87.5 & Yes \\
8 & 5 & F & 2 & None & 2 & 1 & 1 & 0 & 33 & 2 & 21 & 100 & Yes \\
9 & 10 & F & 3 & Moderate & 3 & 0 & 4 & 0 & 46 & 2 & 13 & 90/90.9 & Yes \\
10 & 6 & F & 2 & None & 1 & 2 & 0 & / & 28 & 2 & 15 & 87.5 & No \\
11 & 6 & M & 4 & None & 2 & 1 & 1 & 0 & 32 & 2 & 14 & 87.5/90 & No \\
12 & 4 & F & 3 & None & >5 & 2 & 1 & / & 26 & 2 & 16 & 87.5/100 & Yes \\
13 & 7 & M & 3 & Mild & 1 & 1 & 0 & 32 & 1 & 15 & 87.5 & Yes \\
14 & 16 & M & 3 & Moderate & 2 & 0 & / & 4 & 39 & 1 & 8 & 51.4/58.6 & No \\
15 & 7 & M & 3 & None & 3 & 1 & 1 & 0 & 49 & 3 & 1 & 0 & Yes \\
16 & 16 & F & 4 & None & 1 & 3 & / & 0 & 45 & 2 & 11 & 68.8/83.3 & No \\
17 & 5 & F & 2 & None & 2 & 1 & 1 & / & 41 & 2 & 5 & 0 & Yes \\
18 & 15 & M & 3 & Severe & 2 & 2 & 1 & / & 44 & 1 & 16 & 87.5/100 & No \\
19 & 7 & F & 3 & Severe & 0 & 2 & 0 & 0 & 33 & 2 & 0 & 0 & No \\
20 & 5 & M & 2 & None & 2 & 1 & 0 & 2 & 28 & 2 & 8 & 51.4/58.6 & No \\
21 & 10 & M & 3 & Severe & 1 & 2 & 0 & 0 & 36 & 2 & 1 & 0 & Yes \\
22 & 8 & M & 2 & None & 2 & 0 & 7 & 0 & 42 & 1 & 14 & 87.5/90 & No \\
23 & 12 & F & 2 & None & >5 & 3 & / & 3 & 45 & 2 & 4 & 0 & Yes \\
24 & 7 & M & 3 & Mild & 2 & 2 & 0 & 0 & 35 & 3 & 9 & 58.6/60 & No \\
25 & 12 & M & 3 & None & 1 & 3 & 0 & 0 & 38 & 2 & 1 & 0 & Yes \\
26 & 11 & M & 3 & Severe & 3 & 1 & 1 & 0 & 43 & 2 & 2 & 0 & Yes \\
27 & 6 & M & 3 & Severe & >5 & 0 & 4 & 0 & 38 & 1 & 23 & 100 & No \\
28 & 18 & F & 4 & None & 1 & 3 & / & 2 & 47 & 2 & 16 & 87.5/100 & No \\
29 & 14 & M & 3 & Severe & 1 & 2 & 1 & / & 1 & 48 & 2 & 5 & 0 & Yes \\
30 & 9 & M & 3 & Moderate & >5 & 11 & 3 & 3 & 40 & 2 & 20 & 100 & Yes \\
31 & 13 & M & 3 & Severe & 4 & 0 & / & 4 & 37 & 0 & 7 & 27.4/51.4 & Yes \\
32 & 8 & M & 4 & None & 4 & 1 & 2 & 0 & 39 & 3 & 12 & 83.3/90.9 & Yes \\
33 & 8 & F & 3 & Severe & 1 & 2 & 0 & 0 & 43 & 3 & 1 & 0 & Yes \\
34 & 2 & F & 2 & None & 1 & 1 & 0 & / & 34 & 2 & 8 & 51.4/58.6 & Yes \\
35 & 5 & F & 2 & None & 0 & 2 & 0 & 0 & 49 & 3 & 3 & 0 & Yes \\
36 & 16 & M & 4 & None & 2 & 0 & / & 8 & 49 & 1 & 1 & 0 & Yes \\
37 & 13 & F & 3 & Severe & 1 & 1 & 0 & 2 & 36 & 1 & 7 & 27.4/51.4 & No \\
38 & 6 & M & 3 & Mild & >5 & 1 & 1 & 14 & / & 38 & 1 & 18 & 100 & No \\
39 & 4 & F & 3 & None & 2 & 0 & 14 & / & 32 & 1 & 12 & 83.3/90.9 & No \\
40 & 11 & M & 3 & Severe & 1 & 1 & / & 2 & 38 & 2 & 17 & 100 & Yes \\
41 & 10 & F & 3 & Severe & 4 & 2 & 0 & 3 & 46 & 2 & 3 & 0 & Yes \\
42 & 6 & F & 3 & None & 2 & 1 & 2 & 0 & 32 & 2 & 6 & 27.4 & Yes \\
43 & 10 & F & 3 & None & 2 & 2 & 2 & 1 & 32 & 3 & 9 & 58.6/60 & Yes \\
44 & 3 & F & 3 & None & 0 & 0 & 0 & / & 37 & 2 & 5 & 0 & Yes \\
45 & 9 & F & 2 & None & 1 & 1 & / & 1 & 28 & 1 & 10 & 60/68.8 & No \\
46 & 4 & F & 3 & None & 3 & 1 & 8 & / & 27 & 1 & 20 & 100 & No \\
47 & 6 & M & 3 & Severe & 1 & 1 & 1 & 0 & 41 & 2 & 1 & 0 & Yes \\
48 & 7 & M & 3 & None & 1 & 2 & 1 & 0 & 37 & 2 & 6 & 27.4 & Yes \\
49 & 9 & F & 3 & None & >5 & 0 & 3 & 0 & 41 & 1 & 12 & 83.3/90 & Yes \\
50 & 10 & M & 3 & Severe & 0 & 1 & 0 & 0 & 39 & 1 & 21 & 100 & Yes \\
51 & 4 & F & 3 & Mild & 1 & 1 & 0 & 0 & 41 & 2 & 14 & 87.5/90 & Yes \\
\hline
\end{tabular}
\caption{Results: *1 Psychomotor retardation level, *2 Daily sugar/sweets consumption levels, *3 Daily tooth brushing, *4 Mother education Level, *5 Questionnaire results.}
\end{table}
The correlation between the severity of depressive symptoms and working outside home was calculated by means of Chi-square test.

Results

The sample consisted of 51 pairs of young patients with systemic diseases and their respective mothers. The patients' subgroup was composed of 25 males and 26 females with an average age of 8.68 ±3.98 years. Data collected are shown in Table 2.

The severity of the disease, established according the ASA scale, classified 36 patients (71%) as ASA 3, 11 patients (21%) as ASA 2, and 4 patients (8%) as ASA 4. Twenty-one patients out of 51 showed psychomotor retardation (RPM). The cooperation level was good in 28 patients (55%), moderate in 8 patients (15.5%), poor in 7 patients (14%) and absent in 8 patients (15.5%). The average dmft/DMFT was 2.7 (range 0 to 14). The dmft/DMFT values were processed in order to find the SIC value (the average dmft/DMFT value of the third of the sample showing the highest dmft/DMFT values). SIC resulted 6.1 (range 3 to 14).

Regarding the consumption of sugar/sweetened products (sweets, chewing gum, cocoa-cola, fruit juice, snacks): 12% of the sample did not consume any sugary food and/or drinks; 31% habitually consumed at least one sweetened product a day; 25% habitually consumed 2 sweetened products a day; 10% habitually consumed 3 sweetened products a day; 8% habitually consumed 4 sweetened products a day; 14% habitually consumed 5 sweetened products a day. Regarding the daily frequency of tooth brushing: 22% (11 of 51) of the mothers stated that their son/daughter never brushes his/her teeth, 41% (21 of 51) once a day, 29% (15 of 51) twice a day, and 8% (4 of 51) three times a day. The mothers' subgroup was composed of 51 subjects with an average age of 38.37±6.04 years. Twenty-seven (53%) mothers had high-school diploma, 17 (33%) mothers had a secondary school diploma and only 7 (14%) had a higher degree level of education. Thirty-three (65%) mothers were employed, while 18 (35%) were unemployed/housewives. Depressive symptoms were found in 27 out of 51 mothers (53%). Among the mothers with depressive symptoms, 7 (26%) answered positively to the questions about thoughts of death/self-harm; 17 (33 %) had a PPV= 0; 24 (47%) had a PPV>80%; and 9 (18%) had a PPV=100%. Six (12%) mothers out of 51 declared to be "single" and had a PPV>58%: in particular 4 had scored a PPV=100% and two of them answered positively to the EPDS's question about thoughts of death/self-harm. Five mothers out of 51 had more than one disabled child: 3 of them scored a PPV >50%.

Statistical results

Statistical results are shown in Table 3. There was a significant positive correlation between child dmft/DMFT and mother PPV (p=0.00), and child dmft/DMFT and daily sugar-sweets consumption (p=0.02). Mothers’ PPV was not significantly correlated to child's age, child's ASA level and his/her daily frequency of tooth brushing. Child dmft/DMFT was not correlated to his/her ASA level and psychomotor retardation.

Regression test revealed that the risk of depression was negatively correlated to the mother’s age (p=0.00). Also the mother’s level of education and risk of depression were negatively correlated (p=0.03). There was no significant correlation between mother’s work and the risk of depression (Chi-square test).

PPV %- ASA	n.s.
PPV %- DMft/DMft	n.s.
PPV %- Mother Work	p=0.00
PPV %- Mother age	p=0.00
PPV %- i.L*4	p=0.03
PPV %- D.c.l.*2	n.s.
PPV %- aSa	n.s.

Discussion

The AAPD defines special health care needs as “any physical, developmental, mental, sensory, behavioral, cognitive, or emotional impairment or limiting condition that requires medical management, health care intervention, and/or use of specialised services or programs. The condition may be congenital, developmental, or acquired through disease, trauma, or environmental cause and may impose limitations in performing daily self-maintenance activities or substantial limitations in a major life activity.”

It is widely recognised that children with disabilities are more exposed to the risks of oral diseases due to the difficulties in tooth brushing and the higher prevalence of dental malocclusion and craniofacial abnormalities [Anders and Davis, 2010]. Many studies show that disability conditions are related to worse oral hygiene levels, higher plaque index and higher dmft/DMFT indices compared to healthy population [Trulsson and Klingberg, 2003; Santos et al., 2002; Bekiroglu et al., 2012]. Other studies show a negative correlation between patient’s oral hygiene and IQ level and parent’s level of education [Jain et al., 2009; Hennenquin et al., 2008; Faulks et al., 2013].

Home caring of a psychologically and/or physically ill child is a complicated process that requires collaboration of all family members and psychological support from specialists [Dyson, 1991]. The impact of child disability on mothers’ psychological distress depends on severity of the disability.
and the child's dependence from others for daily activities: the less self-sufficient is the child, the greater is parental distress [Breslau et al., 1982].

Major depression is characterised by bad mood, reduced ability to experience pleasure and frequent cognitive, physiological and high anxiety symptoms [Sibille and French, 2013]. In Europe the prevalence of major depression among women in 2001 was 10.05% [Ayuso-Mateos et al., 2001]. The results of our study show that major depression symptoms are present in 53% of the mothers of children with disabilities and that 18% of them have a 100% risk of suffering from major depression. Despite the relatively small dimension of the sample, our data suggest that the psychological status of mothers of disabled children should be studied more in depth by experts.

Compared to studies examining how maternal depression affects parenting, there are few researches testing how psychiatrically ill children affect the parenting they elicit and receive [Zalewski et al., 2013]. Generally, families with disabled children report higher levels of conflict and less cohesion across family members [Easterbrooks et al., 2012], and families with children with attention-deficit hyperactivity disorder, conduct problems, and anxiety report more parenting stress [Hiebert-Murphy et al., 2012; Johnston and Mash, 2001].

Many studies evidence that mothers show significantly more stress than fathers due to the different responsibility assigned in the child's rearing [Moes et al., 1992; Delleve et al., 2006]. Mothers take on a larger part of the extra care and practical work that the child with disabilities requires [Moes et al., 1992; Bristol, 1987], they more often abandon their career and feel unable to pursue their own interests [Breslau et al., 1982]. Unsupported mothers can suffer of excessive somatisation that can lead to an increased perception of difficulty in taking care of their son/daughter and themselves, and frequently show an increased risk of major depression [Baker et al., 2011]. For all those reasons, mothers need flexibility, cohesion and support from all family members and need support from professionals, such as psychologist, to be supported in this experience. In this study, all children of the sample were not institutionalized and they were living at home with their mothers, so the mothers' mental status was dependent on the child disability severity and was primarily important in children growth, psychological stability and health status. The socioeconomic status was not consistently related to parental depression in families with children with disabilities, indicating that it may not serve as a buffer against depression in the presence of specific stressors [Blacher et al., 1997]. This, along with the fact that lower family income is associated with higher stress and depression, in families with disabled children very important is also marital economic and emotional support [Kraus et al., 2003; Sanders and Morgan, 1997]. Marital and/or cohabitation relationships and prevention of domestic discord may be the best ways to promote parental mental health in families with children with disabilities [Fisman and Wolf, 1991; Hanson and Hanline, 1990; Slaper, 1999]. Single mothers with children with disabilities are more prone to severe depression than mothers living with a partner [Moes et al., 1992].

Older mothers of disabled children are less inclined than younger mothers to fall into major depression [Delleve et al., 2006]. Working mothers have decreased tiredness, better support from their spouse, a better active coping knowledge and increased compliance with professional advice [Kabir et al., 2001]. Full-time working mothers also showed decreased physical strain. Emotional strain and social isolation are factors negatively associated with a general life satisfaction [Delleve et al., 2006].

Few studies have demonstrated the effects of maternal depression on a child's health: a higher rate of accidents has been found in children of depressed mothers, such as higher number of hospitalisations [Casey et al., 2004] but there are no studies evaluating the correlation between mother's depression and oral health status of the child. Our results show that there is a strong correlation between mothers' depression risk and a higher dmft/DMFT in children. A sugar consumption increase is related to higher dmft/DMFT scores and higher mother's PPV scores. Children who consume a higher proportion of their total energy intake as sugars had a higher increment of approximal caries. In literature studies showed that the average number of daily eating occasions is not related to caries increment, but the average consumption of in-between meals sugar is related to the caries increment [Burt et al., 1988; Akpata et al., 1992]. Our hypotesis is that depressed mothers might have more difficulties in taking care of their children in terms of education to good eating habits and proper diet (they might be more used to pamper their children with sugar sweetened products), and in terms of caring for their dental health (tooth brushing, use of fluoride, recurrent dental examinations). Furthermore mothers with a low education level could not be aware of the role of oral health as part of overall health; especially in case of disabled children, oral health is frequently considered less important in the context of a severe mental or physical disability.

Mothers and family of disabled children should be supported by psychologists in order to evaluate the impact of caregivers’ distress on the children health status [Dyson, 1991]. Oral health, for its importance on the general health status and for its expensive costs, should be always monitored. Special need patients should be included in a prevention and screening programme comprising professional oral hygiene, pit and fissure sealants of permanent molars and premolars early in their life.

From the results of the present study and previous researches, it can be concluded that mothers of disabled children show higher depression risk scores [Blacher et al., 1997]. It is important to to be aware of specific problems related to having a child with a rare disease and to identify and offer appropriate psychological support for parents who are depressed since this is a serious condition not only for the parent, but also for the rest of the family [Blacher et al., 1997; Delleve et al., 2006].
Conclusion

Disabled children of depressed mothers show a higher dmft/DMFT and consume a high amount of sugary products. Mothers should be referred for psychological and psychiatric consultation to be supported in the process of accepting and raising a disabled child, and to avoid to fall into depressive symptoms. Dentists and pediatricians should instruct the mothers on the importance of oral health: especially in a context of systemic diseases as disabled children have, mothers should be aware of the primary role of oral health on the overall body health.

References

Slataper RL. Models of service support for parents of disabled children. Child Care Health Dev 2003;29:413-422.
