Adhesion and biofilm formation by periodontopathogenic bacteria on different commercial brackets

ABSTRACT

Aim To compare early bacterial adhesion and biofilm formation of common and uncommon periodontal pathogens on a variety of commercial brackets in vitro.

Methods In vitro adhesion and biofilm formation of 4 bacterial strains on 15 different commercial brackets, in standard culture mediums with and without addition of either serum or human saliva was evaluated by quantitative real time PCR after extraction of bacterial DNA.

Results Materials significantly influenced bacterial adhesiveness in a species-specific way. Titanium and gold brackets constantly yielded the lowest values with all tested bacteria and in all tested conditions. Bracket materials and medium of growth significantly influenced biofilm formation.

Conclusion Materials and environmental conditions significantly influence biofilm formation by periodontal pathogens at the surface of brackets. Whenever possible brackets should be kept far from the gingival margin and if this is not possible, brackets made of gold, titanium, and ceramic should be preferentially used.

Keywords Bacterial adhesion; Biofilm formation; Brackets.

Introduction

The number of subjects seeking orthodontic treatment has increased enormously over the last few decades, together with the mean age of patients. In parallel, the reasons inducing subjects to require treatment have changed and in a number of cases they only wish to improve their dentofacial aesthetics, in the absence of any functional limitation or defect [Shaw et al., 1991; Harris, 2011]. A fixed orthodontic appliance, once placed in the mouth of a patient, significantly interferes with oral hygiene procedures. The consequent abnormal accumulation of dental plaque leads to increased incidence of complications of microbial origin, including caries [Artun and Brobakken, 1986; Forsberg et al., 1991; Rosenbloom and Tinanoff, 1991], reversible gingival inflammation [vanGastel et al., 2007; Alexander, 1991; Wennstrom, 1996; Bollen et al., 2008], and periodontal damage [Aass et al., 1988; Polson et al., 1988; Hongyan et al., 2011].

Although morphological alterations of dental profiles due to the application of brackets and ligatures have a key role in favouring the accumulation of plaque in these patients, materials used to fabricate appliances are also important. In the recent past, great attention was paid to the relationship existing between the presence of orthodontic appliances, materials and the accumulation of cariogenic bacteria [vanGastel et al., 2007; 2009, Faltermeier et al., 2008; Ahn et al., 2007; Papaioannou et al., 2007], but several reports have pointed out that fixed orthodontic treatment favours colonisation of dental sites by potentially periodontopathogenic bacteria [Paolantonio et al., 1996, 1999; Petti et al., 1997].

In spite of the said evidences on the relationship existing between orthodontic appliances and the incidence of gingival and periodontal problems, most researches intended to identify materials less prone to bacterial colonisation have considered mainly adhesion of cariogenic bacteria. This consideration prompted us to perform a comparative study evaluating the adhesion of different periodontopathogenic bacteria to a variety of brackets representing the main commercially available categories.

Materials and methods

Brackets

Fifteen commercially available brackets, made of different materials, were used (Table 1). All brackets were maxillary premolar brackets, with the Roth prescription and a 0.022-inch slot. Twelve brackets for each bacterial strain were tested.

Bacterial strains and cultures

Four strains of different species of common and
uncommon periodontal pathogens were used (Table 2). All strains were kept in stock cultures frozen at -80°C in the adequate culture medium (Table 2), containing glycerol (20% v/v). For adhesion assays, isolated colonies of each strain were inoculated in the corresponding culture medium and incubated at 37°C with mild shaking until the mid-logarithmic phase of growth. Bacterial cells were then collected by centrifugation and suspended in fresh sterile medium, diluted 1/2 with sterile phosphate buffered saline pH 7.2 (PBS), or sterile heat-inactivated foetal bovine serum (FBS) or sterile saliva, at an OD600nm = 0.1. Saliva was obtained by paraffin stimulation from 15 healthy volunteers (having refrained from eating and drinking in the previous 2 hours) and checked for pH being in the range 7.0 to 7.3. Saliva samples were subjected to sonication (1 minute at 30 W with refrigeration), filtered through a 70 µm filter (Cell Strainer, Becton Dickinson Italia, Bucinasco, Italy) and centrifuged at 22,000 x g for 60 minutes at 4°C. Supernatants were pooled, sterilised by sequential filtration through 0.45 µm and 0.2 µm filters, stored at 4°C and used within the next 48 hours.

Adhesion assays

In order to perform standardised adhesion assays, brackets were mounted on 0.6 x 0.6 cm polished clear acrylic blocks (K-Mac Plastics Wyoming, MI, USA) attached to the cover of a 24-well polystyrene plate. The mounting process was performed by a single operator inside a sterile class II biohazard cabinet. The central region of each block, in the exact position where a bracket had to be fixed, was roughened with a diamond coated bur in such a manner that these areas were completely covered by the bracket bases. The brackets were then bonded with Transbond PLUS color change adhesive (3M Unitek, Monrovia, CA, USA). Excess adhesive was carefully removed and the composite was light-cured for 30 seconds from both sides. Brackets mounted this way were completely submerged when each well was filled with 1.1 ml of bacterial suspension.

Before contact with the bacterial cultures, brackets were placed in 24-well plates containing the sterile medium diluted 1/2 in PBS, or FBS or saliva and incubated at 37°C for 1 hour.

Pre-conditioned brackets were then transferred to a new plate with wells filled with the bacterial suspension in the corresponding medium and incubated for 4 and 48 hours at 37°C on an orbital shaker at 60 rpm.

Following incubation with the different bacterial suspensions, the brackets were removed with a sterile pliers and transferred into an adequately coded well of a flat bottom 96-well plate containing 0.1 ml of

TABLE 1 List of brackets used during the study, their identification keys in the text and results section, manufacturer and construction material.

<table>
<thead>
<tr>
<th>IDENTIFICATION</th>
<th>BRACKET DESCRIPTION</th>
<th>MANUFACTURER</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clarity Advanced Ceramic</td>
<td>3M Unitek</td>
<td>Ceramic</td>
</tr>
<tr>
<td>2</td>
<td>Ceramic Bracket</td>
<td>Dentsply</td>
<td>Ceramic</td>
</tr>
<tr>
<td>3</td>
<td>Fascination 2</td>
<td>Dentsaurum</td>
<td>Ceramic</td>
</tr>
<tr>
<td>4</td>
<td>Enhance Ceramic</td>
<td>Ortho Specialties</td>
<td>Ceramic</td>
</tr>
<tr>
<td>5</td>
<td>Victory Series</td>
<td>3M Unitek</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>6</td>
<td>Stainless Steel Bracket</td>
<td>Dentsply</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>7</td>
<td>Equilibrium 2</td>
<td>Dentsaurum</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>8</td>
<td>Gold Victory Series</td>
<td>3M Unitek</td>
<td>Gold</td>
</tr>
<tr>
<td>9</td>
<td>Regency Gold</td>
<td>Ortho Specialties</td>
<td>Gold</td>
</tr>
<tr>
<td>10</td>
<td>Clear Brackets</td>
<td>Dentsply</td>
<td>non-polycarbonate plastic</td>
</tr>
<tr>
<td>11</td>
<td>Elegance</td>
<td>Dentsaurum</td>
<td>Polycarbonate</td>
</tr>
<tr>
<td>12</td>
<td>Comp Plus T</td>
<td>Ortho Specialties</td>
<td>Composite</td>
</tr>
<tr>
<td>13</td>
<td>Equilibrium Ti</td>
<td>Dentsaurum</td>
<td>Titanium</td>
</tr>
<tr>
<td>14</td>
<td>GEM Monocristalline</td>
<td>Ortho Specialties</td>
<td>Sapphire</td>
</tr>
<tr>
<td>15</td>
<td>Pure</td>
<td>Ortho Technology</td>
<td>Sapphire</td>
</tr>
</tbody>
</table>

TABLE 2 Bacterial strains and culture conditions.

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>STRAIN</th>
<th>MEDIUM</th>
<th>CULTURE CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregatibacter actinomycetemcomitans</td>
<td>DSM8324</td>
<td>TSB</td>
<td>37°C - M</td>
</tr>
<tr>
<td>Porphyromonas gingivalis</td>
<td>DSM20709</td>
<td>DSM medium 104</td>
<td>37°C - AN</td>
</tr>
<tr>
<td>Prevotella intermedia</td>
<td>DSM20706</td>
<td>DSM medium 104</td>
<td>37°C - AN</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>SA1448</td>
<td>TSB</td>
<td>37°C-AE</td>
</tr>
</tbody>
</table>

TSB: Trypticase Soy Broth; DSM medium 104: formula available at www.DSMZ.de; M: incubation in 5% CO2 enriched atmosphere; AN: incubation in atmosphere of 80% N2, 10% CO2, and 10% H2; AE: incubation in air.
sterile PBS. Brackets were then washed five times with sterile PBS and further processed for the assessment of adherent bacteria by quantitative Real-Time PCR.

Bacterial DNA extraction
To extract bacterial DNA from lysates of adherent bacteria the Nucleospin Genomic DNA purification Kit (Macherey-Nagel GmbH Düren, Germany) was used. To obtain lysis of bacteria adherent to the surface of brackets, 0.2 ml of lysis buffer (20 mM Tris-HCl; 2 mM EDTA; 1% Triton X-100; pH 8.0 supplemented with 20 mg/ml lysozyme and 0.2 mg/ml lysostaphin) was added to each bracket, which was then incubated at 37°C for 60 minutes. Proteinase K was then added and samples were incubated at 56°C until complete lysis was obtained. Following lysis total DNA was purified according to the instructions of the manufacturer. Purified DNA was recovered and stored at -80°C as the template for Real-Time PCR reactions. All chemicals were purchased from Sigma-Aldrich (Milan, Italy).

Quantitation of bacterial DNA by Real-Time PCR
Bacterial DNA was extracted, as described above for samples from adhesion assays, from 1 ml of a pure culture of each tested strain at a density of 10⁸ CFU/ml. Total DNA was serially diluted to obtain a series of samples containing DNA from different amounts of bacteria for each tested species in the range 5x10²-5x10⁵ cells/sample. Quantitative determination of bacterial DNA in standards and samples was performed by a quantitative Real-Time PCR using the 16S rRNA gene universal primers 357F and 907R [Lane, 1991; Yamamura et al., 2005] using the Maxima® SYBR Green/Fluorescein qPCR Master Mix (Fermentas Life Sciences) according to the instructions of the manufacturer. Cycling conditions were performed as previously described [Yamamura et al., 2005] and were undertaken using an Applied Biosystems 7300 system. Purity of amplification products was assessed following construction of melting curves. Data were reported as number of bacteria detected for each bracket.

Statistics
Statistic evaluation of the significance of differences among results of adhesion assays was performed by the Student t test available in the Microsoft Excel software. Differences yielding values of P in the range >0.01 to ≤0.05 were considered significant while differences yielding values of P ≤0.01 were considered very significant.

FIG. 1 Adherent bacteria detected at the surface of different brackets in adhesion (4h) and biofilm formation (48h) assays performed in culture medium alone or complemented with either foetal bovine serum (FBS) or saliva. Results are reported as means for brackets grouped according to construction material: A: ceramic, B: stainless steel, C: Gold, D: plastic or composite, E: titanium, F: monocrystalline sapphire. Standard deviation bars are reported.
Results

Mean values of adherent periodontopathogenic bacteria detected at the surface of different brackets in adhesion and biofilm formation assays performed in culture medium alone or complemented with either FBS or saliva are reported in Figure 1. The 15 tested brackets were divided into 6 groups depending on the material they were made of: ceramic (brackets 1 to 4), stainless steel (brackets 5 to 7), gold (brackets 8 and 9), composites (brackets 10 to 12), titanium (bracket 13), and monocrystalline sapphire (brackets 14 and 15). Results showed that materials significantly influenced bacterial adhesiveness in a species specific way. In fact, *A. actinomycetemcomitans* and *S. aureus* overall adhered better than the two strict anaerobes *P. gingivalis* and *P. intermedia*, although significant differences were evident in adhesiveness to the different brackets groups. Titanium and gold brackets constantly yielded the lowest values with all tested bacteria and in all tested conditions, while brackets made of composites always resulted more susceptible to bacterial adhesion (Fig. 1). The medium used to perform adhesion assays did not influence results significantly. In fact, results of adhesion assays at 4h for all tested materials in medium, FSB and saliva were comparable (Fig. 1, 2). Biofilm formation, assessed by counting adherent bacteria after 48h of growth in medium alone or containing either FBS or saliva yielded different results in a strain, material and medium dependent manner. In fact, *S. aureus* formed much greater biofilms in all tested conditions as compared to the other tested bacteria (Fig. 1). Moreover, *A. actinomycetemcomitans* formed greater biofilms as compared to *P. gingivalis* and *P. intermedia* (Fig. 1). Overall, saliva significantly stimulated biofilm growth in *S. aureus*, *P. gingivalis* and *P. intermedia*, but not in *A. actinomycetemcomitans* (Fig. 2).

The presence of saliva significantly enhanced biofilm growth on all tested materials (Fig. 2, 3). Composites resulted significantly more susceptible than other tested materials to growth of bacterial biofilms in all tested conditions (Fig. 3).

Discussion and conclusion

The present study aimed to evaluate the susceptibility
of 15 different brackets to adhesion and biofilm formation by 4 different bacterial species selected among common and occasional periodontopathogens. In fact, fixed orthodontic appliances are known to promote gingival inflammation, potentially biasing the periodontal health of patients [Aass et al., 1988, Polson et al., 1988, Hongyan et al., 2011] although further epidemiologic evidences are needed for this. In recent years the number of young adults and adults requiring orthodontic treatment, mostly for aesthetic reasons has greatly increased, making it necessary to have more information on the materials that are best suited in these cases that are naturally more susceptible to periodontitis than children. Results of this study confirm that different materials used in the construction of brackets greatly influence adhesion by different important periodontopathogens and by the oral colonizer S. aureus, that is recently receiving attention as a possible cause of periodontal damage [Passariello et al., 2011 a].

More interestingly, results have shown that the presence of saliva greatly influences the capacity of some of these microorganisms to form biofilms at the surface of all tested brackets. This observation suggests the need to keep brackets away from the gingival margin, because their presence stimulates plaque overgrowth not only due to space hindrance but possibly also as a consequence of adsorption of salivary components. Consequently, the choice of brackets made of gold, titanium, ceramic and to a lesser extent sulphur could be strongly indicated in the presence of reduced clinical crown dimensions. The application of aesthetic plastic brackets in these cases is not advisable due to higher risk to promote inflammation as a consequence of heavy plaque accumulation.

Our results also show that analysis of biomaterials susceptibility to bacterial colonisation should include not only adhesion assays, which are poorly influenced by the assaying conditions, but also biofilm formation assays due to their higher capability to show differences in the susceptibility of materials to colonisation.

In the light of recent reports demonstrating that oral colonisation by S. aureus is influenced by oral conditions [Passariello et al., 2011a,b] and that the presence of this microorganism in the oral cavity of humans may pose a threat to their general health [Zuanazzi et al., 2010]. Further studies should be performed to address this point and evaluate if selection of specific materials for orthodontic appliances may influence S. aureus oral carriage rates and constitute a way to reduce the circulation of this dangerous opportunistic pathogen, particularly in at risk patients.

Acknowledgements

This work was supported by a grant from MIUR (Project PRIN 2007/LXNY57_003 granted to CP) and by funds of the University of Brescia granted to Pierangelo Gigola. The authors have no conflict of interests regarding this manuscript.

References